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ABSTRACT 

We give a preliminary perspective on the basic principles and pitfalls of adjustable autonomy and human-
centered teamwork. We then summarize the interim results of our study on the problem of work practice 
modeling and human-agent collaboration in space applications, the development of a broad model of 
human-agent teamwork grounded in practice, and the integration of the Brahms, KAoS, and NOMADS 
agent frameworks We hope our work will benefit those who plan and participate in work activities in a 
wide variety of space applications, as well as those who are interested in design and execution tools for 
teams of robots that can function as effective assistants to humans. 
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1.0 INTRODUCTION 

Tomorrow’s world will be filled with agents embedded everywhere in the places and things around us  
[43; 44]. Providing a pervasive web of sensors and effectors, teams of such agents will function as 
cognitive prostheses – computational systems that leverage and extend human cognitive, perceptual,  
and collaborative capacities, just as the steam shovel was a sort of muscular prosthesis or eyeglasses a sort 
of visual prosthesis [40]. Thus the focus of AI research is destined to shift from Artificial Intelligence to 
Augmented Intelligence [12; 48]. 

While simple software and robotic assistants of various kinds today capture our attention, the future surely 
holds much more novel and sophisticated agent-powered devices than we can currently imagine. A key 
requirement for such devices is for real-time cooperation with people and with other autonomous systems. 
While these heterogeneous cooperating entities may operate at different levels of sophistication and with 
dynamically varying degrees of autonomy, they will require some common means of representing and 
appropriately participating in joint tasks. Just as important, developers of such systems will need tools and 
methodologies to assure that such systems will work together reliably, even when they are designed 
independently. 

Teamwork has become the most widely-accepted metaphor for describing the nature of multi-agent 
cooperation. The key concept usually involves some notion of shared knowledge, goals, and intentions 
that function as the glue that binds team members together [27]. By virtue of a largely-reusable explicit 
formal model of shared intentions, team members attempt to manage general responsibilities and 
commitments to each other in a coherent fashion that facilitates recovery when unanticipated problems 
arise. For example, a common occurrence in joint action is when one team member fails and can no longer 
perform in its role. A general teamwork model might entail that each team member be notified under 
appropriate conditions of the failure, thus reducing the requirement for special-purpose exception handling 
mechanisms for each possible failure mode. 

Whereas early research on agent teamwork focused mainly on agent-agent interaction, there is a growing 
interest in various dimensions of human-agent interaction [13]. Unlike autonomous systems designed 
primarily to take humans out of the loop, many new efforts are specifically motivated by the need to 
support close human-agent interaction [42; 53; 59; 81]. Under NASA sponsorship, we are investigating 
issues in human-robotic teamwork and adjustable autonomy. Future human missions to the Moon and to 
Mars will undoubtedly need the increased capabilities for human-robot collaborations we envision. 
Astronauts will live, work, and perform laboratory experiments in collaboration with robots inside and 
outside their spacecraft and habitats on planetary surfaces. 

An adequate approach to design of cooperative autonomous systems requires first and foremost a thorough 
understanding of the kinds of interactive contexts in which humans and autonomous systems will 
cooperate. With our colleagues at the Research Institute for Advanced Computer Science (RIACS)  
at NASA Ames Research Center, we have begun to investigate the use of Brahms [75] as an agent-based 
design toolkit to model and simulate realistic work situations in space. The ultimate objective is to 
produce agent-based simulations in Brahms that could form the basis for the design of robotic and 
software agent functions for actual operations. On its part, IHMC is enhancing the KAoS [16; 18; 19]  
and NOMADS [80] agent frameworks to incorporate explicit general models of teamwork, mobility,  
and resource control appropriate for space operations scenarios. These models are represented largely in 
the form of policies [19; 32; 66]. 

In the following pages, we outline a preliminary perspective on the basic principles and pitfalls of 
adjustable autonomy and human-centered teamwork (section 2). We emphasize the importance of careful 
observation and modeling of human work practice as a foundation for teamwork theory, and the central 
role of adjustable autonomy in the design of agent systems. We then describe how we are beginning to 
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apply this approach to human-agent collaboration in space applications (section 3). We introduce Brahms, 
a work practice modeling and social simulation environment that is being adapted to operate in 
conjunction with teamwork policies implemented within KAoS agent services [16; 19], and strong 
mobility and resource management services implemented in NOMADS [80]. We summarize our initial 
results in section 4. 

2.0 HUMAN-CENTERED PERSPECTIVES ON TEAMWORK1 

“Agents occupy a strange place in the realm of technology,” observes Donald Norman, “leading to much 
fear, fiction, and extravagant claims” [69, p. 49]. Because ever more powerful intelligent agents will 
increasingly differ in important ways from conventional software of the past, we need to take into account 
the social issues no less than the technical ones if the agents we design and build are to be acceptable to 
people: 

“The technical aspect is to devise a computational structure that guarantees that from the technical 
standpoint, all is under control. This is not an easy task. The social part of acceptability is to provide 
reassurance that all is working according to plan… This is [also] a non-trivial task” [69, p. 51]. 

Elsewhere we have written about our efforts to address some of the technical aspects of control for 
increased human acceptability: safety, privacy, and other guards against error and maliciousness in long-
lived agent communities [19]. In this chapter, we will focus mainly on issues of social acceptability,  
in particular with making sure that interactions between agents and people are as natural and effective as 
possible.2 

Specific approaches to human-agent teamwork have been explored, including interface agents [31; 53;  
59; 60]), mixed-initiative systems [22; 37], and collaboration theory [47; 71]. In addition, researchers such 
as Tambe [74; 81] have successfully adapted principles of agent-agent teamwork to human-agent 
interaction in various settings. 

Unlike other approaches to agent teamwork, a human-centered perspective requires that the design of 
agents be problem-driven, activity-centered, and context-bound [85]. Thus we must begin with a detailed 
understanding of how people actually work. To enable such study, we have developed and used Brahms,  
a language coupled with an agent modeling and simulation environment that can capture complexities of 
observation, communication, and collaboration in the context of group work [75]. Our approach seeks  
to incorporate the best of previous research on human-centered collaboration and teamwork,  
while simultaneously grounding new findings in our own work practice study experience.3 

                                                      
1  Most of section 2 appears in expanded form in [13]. 
2  For an entertaining and informative general characterization of various approaches to human-centered computing, see [51]. 
3  Researchers in human-agent teamwork have used the term in two broad ways: 1) as a conceptual analogy for heuristically 

directing research (e.g., to build systems that facilitate fluent, coordinated interaction between the human and agent 
elements of the system as “team players”) and 2) as the subject matter for research (e.g., to understand the nature of 
teamwork in people). The first activity focuses on practical engineering of useful systems through application of human-
centered design principles, empirical studies of the use of these systems, and often a limited commitment to studying 
teamwork among people. The second activity is explicitly framed as a scientific study, and may have two angles:  
1) providing information relevant to the design of successful human-agent systems, and 2) independent of application, 
understanding the nature of cognition, communication, and cooperation in people and animals. The latter activity is seen by 
these researchers as essential for achieving the ultimate goals of artificial intelligence. Since members of our research team 
are drawn from each tradition, our approach attempts to reflect sensitivity to both: neither undervaluing the independent 
study of social and cognitive aspects of human teamwork, nor slavishly imitating superfluous aspects of natural systems in 
the development of artificial ones, like an engineer who insists that successful airplane designs must necessarily feature 
flapping wings because all birds have them [41]. 
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2.1 Desiderata for Human-Centered Systems 
Following a careful study of the introduction of automation into complex domains, Billings [8] described a 
set of desiderata for human-centered systems: 

“Premise:  Humans are responsible for outcomes in human-machine systems. 

Axiom:  Humans must be in command of human-machine systems. 

Corollary:  Humans must be actively involved in the processes undertaken by these systems. 

Corollary:  Humans must be adequately informed of human-machine system processes. 

Corollary:  Humans must be able to monitor the machine components of the system. 

Corollary:  The activities of the machines must therefore be predictable. 

Corollary:  The machines must also be able to monitor the performance of the humans. 

Corollary:  Each intelligent agent in a human-machine system must have knowledge of the intent  
of the other agents.”4 

Note that Billings’ main premise (“Humans are responsible for outcomes in human-machine systems”) 
implicitly assumes a fundamental asymmetry between humans and today’s agents. Notwithstanding this 
assumption, we expect the broad balance between human and agent initiative and responsibility to  
co-evolve commensurate with the degree of trust humans are willing (or required) to exercise in particular 
kinds of technology for specific contexts of use. Already people rely routinely on technology to do things 
automatically for them that were unthinkable not too long ago. Section 2.2 shows how within the 
perspective of human-centered agent teamwork these asymmetries between people and machines are best 
viewed as broad complementarities. Section 2.3 briefly discusses research in adjustable autonomy that 
aims to enable principled yet dynamic flexibility in the roles of people and agents. 

The corollaries to Billings’ main premise serve to underscore the importance of maintaining appropriate 
mutual awareness among team members. Each actor, both human and agent, must not only be able to 
realistically assess the overall situation and current the state and intentions of the other team members,  
but also to accurately ascertain trends and reliably predict future states. Section 2.4 discusses the 
challenges that researchers face in trying to overcome these mutual “gulfs of evaluation and execution.” 

Finally, section 2.5 aims to correct the common misperception that automation is a simple substitution  
of machine for human effort. Instead, results of many years of research makes it clear that,  
ore fundamentally, automated assistance changes the nature of the task itself. 

2.2 Complementary Asymmetries in Human-Agent Interaction 
Humans and artificial agents are two disparate kinds of entities that exist in very different sorts of worlds. 
For the foreseeable future there will be a fundamental asymmetry in their capabilities: the brightest agents 
will be limited in the generality if not the depth of their inferential, adaptive, social, and sensory 
capabilities; humans, though fallible, are functionally rich in reasoning strategies and their powers of 
observation, learning, and sensitivity to context [2]. Moreover, agents interact directly and efficiently in 
cyberspace but indirectly and awkwardly in the material sphere; humans shine in the world of atoms but 
cannot juggle bits on their own. Adapting to appropriate mutual roles that take advantage of the respective 
strengths of humans and agents, and crafting natural and effective modes of interaction are key challenges. 

All this being said, we do not wish to extend here the long tradition of MABA-MABA (men-are-better-
at/machines-are-better-at) lists that began with the classic report of Paul Fitts et al. [38]. The point is not to 

                                                      
4  Note that this applies to people and to software agents. 
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think so much about which tasks are best performed by humans and which by agents but rather how  
tasks can best be shared to be done by both humans and agents working in concert [49]. Licklider [58] 
called this concept man-computer symbiosis.5 

To counter the limitations of the Fitts’ list, which is clearly intended to summarize what humans and 
machines each do well on their own, Hoffman has summarized the findings of Woods in an “un-Fitts list” 
[51] (see Table 1), which emphasizes how the competencies of humans and machines can be enhanced 
through appropriate forms of mutual interaction. These guidelines provide useful general heuristics for the 
development of our model of human-agent teamwork. 

Table 1: An “un-Fitts” List [51] 

Machines  
Are constrained in that: Need people to: 
Sensitivity to context is low and is ontology-
limited 

Keep them aligned to context 

Sensitivity to change is low and recognition of 
anomaly is ontology-limited 

Keep them stable given the variability and change 
inherent in the world 

Adaptability to change is low and is ontology-
limited 

Repair their ontologies 

They are not “aware” of the fact that the model 
of the world is itself in the world 

Keep the model aligned with the world 

People  
Are not limited in that: Yet they create machines to: 
Sensitivity to context is high and is knowledge- 
and attention-driven 

Help them stay informed of ongoing events 

Sensitivity to change is high and is driven by the 
recognition of anomaly 

Help them align and repair their perceptions 
because they rely on mediated stimuli 

Adaptability to change is high and is goal-driven Effect positive change following situation change 
They are aware of the fact that the model of the 
world is itself in the world 

Computationally instantiate their models of the 
world 

2.3 Adjustable Autonomy 
Before discussing adjustable autonomy, it is important to describe the concept of autonomy itself in more 
detail.6 Some important dimensions of autonomy can be straightforwardly characterized by reference to 
Figure 1, with degrees of autonomy corresponding to varying nested ranges of action available to an agent 
in a given context.7 The nesting of the regions in the diagram is consistent with logical constraints that 

                                                      
5  The ultimate in such symbiosis is where the boundary between agents and people disappears altogether, with the agents 

being subsumed into the human’s eudaemonic space (i.e., the agents seem to be part of the person). 
6  Note that there is a subtle difference in common usage of the word autonomous between Americans and Europeans. In the 

latter, the original sense of the term as describing something that is capable of self-government (Greek: auto- (self) + 
nomos (law)) strongly predominates, whereas in American English usage the senses of independence from outside control 
and self-directedness have developed stronger associations with the word (American Heritage Dictionary). This difference, 
while not affecting the ability of researchers from different backgrounds to understand one another, may sometimes affect 
the slant or emphasis put on various aspects of their respective conceptualizations of autonomy. Note, for example, Brainov 
and Hexmoor’s emphasis on degree of autonomy as a relative measure of independence between an agent and the physical 
environment, and within and among social groups [20]. Luck et al. [61], unsatisfied with defining autonomy as a wholly 
relative concept, argue that the self-generation of goals should be the defining characteristic of autonomy, thus allowing it 
to be regarded in absolute terms that more clearly reflect the precedence of the sense of self-government. 

7  We refer to actions instead of goals because in our approach we think of goals as (roughly) a form of abstract action. 
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would ideally govern the relationship among these sets of actions – for example, the fact that an agent 
should not be obligated to perform an action that it is not permitted to do. The outermost scope defines a 
range of theoretically possible actions that could be taken by a maximally-autonomous agent with a 
“complete” set of capabilities, unqualified permissions, and no obligations. In practice, only a subset of 
these actions would be ones that an agent could be expected to achieve independently, however a larger set 
of actions could typically be achievable in concert with others. Finally, the extent of an agent’s autonomy 
is affected by policy-based deontic constraints: the larger the range of its permitted actions and the smaller 
the set of its obligations, the more freely it can act.8 

 

Figure 1: Degrees of Autonomy Corresponding to Varying  
Nested Ranges of Action Available to an Agent [13]. 

Humans and agents may play mutual roles that vary according to the relative degree of initiative 
appropriate to a given situation (Figure 2).9 At the one extreme, traditional systems are designed to carry 
out the explicit commands of humans with no ability to ignore orders (i.e., executive autonomy [7; 35]), 
generate their own goals (i.e., goal autonomy [35; 61]), or otherwise act independently of environmental 

                                                      
8  We can make a rough comparison between these dimensions and many of the aspects of autonomy described by Falcone 

and Castelfranchi [35]. Environmental autonomy can be expressed in terms of the possible actions available to the agent –  
the more the behavior is wholly deterministic in the presence of a fixed set of environmental inputs, the smaller the range of 
possible actions available to the agent. The aspect of self-sufficiency in social autonomy relates to the ranges of what can 
be achieved independently vs. in concert with others; deontic autonomy corresponds to the range of permissions and 
obligations that govern the agent’s choice among actions. 

9  For a more fine-grained presentation of a continuum of control between humans and machines, see Hancock and Scallen’s 
[49] summary of Sheridan’s ten-level formulation. Barber et al. differentiate three kinds of relationships among agents: 
command-driven (i.e., the agent is fully subordinated to some other agent), true consensus (i.e., decision-making control is 
shared equally with other agents), and locally autonomous/master (i.e., the agent makes decisions without consulting other 
agents and may be allowed to command subordinates) [6]. 
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stimuli (i.e., environmental autonomy [20; 35]). Such systems cannot, in any significant sense, act;  
they can only be acted upon. At the other end of the spectrum is an imagined extreme in which agents 
would control the actions of humans.10 Between these two extremes is the domain of today’s agent 
systems, with most agents typically playing fixed roles as servants, assistants, associates, or guides.  
Such autonomous systems are designed with fixed assumptions about what degree of initiative is 
appropriate to their tasks. They execute their instructions without considering that the optimal level of 
autonomy may vary by task and over time, or that unforeseen events may prompt a need for either the 
human or the agent to take more control. At the limit of this extreme are strong, silent systems [73]  
with only two modes: fully automatic and fully manual. In practice this can lead to situations of human 
“underload,” with the human having very little to do when things are going along as planned, followed by 
situations of human “overload,” when extreme demands may be placed on the human in the case of agent 
failure. 

 

Figure 2: Spectrum of Agent Roles in Human-Agent Interaction [13]. 

Although in practice many do not live up to their billing, the design goal of mixed-initiative systems is to 
allow agents to dynamically and flexibly assume a range of roles depending on the task to be performed 
and the current situation [22; 29; 37]. Research in adjustable autonomy supports this goal through the 
development of an understanding of how to ensure that, in a given context, the agents are operating at an 
optimal boundary between the initiative of the human and that of the agents. People want to maintain that 
boundary at a sweet spot in the tradeoff curve that minimizes their need to attend to interaction with the 
agent while providing them with a sufficiently comfortable level of assurance that nothing will go wrong. 
                                                      

10  Of course, in real systems, the relative degree of initiative that could be reasonably taken by an agent or human would not 
be a global property, but rather relative to particular functions that one or the other was currently assuming in some 
context of joint work (see [7; 11; 46; 49]). 
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In principle, the actual adjustment of an agent’s level of autonomy could be initiated either by a human,  
an agent, or some third party.11 There are several dimensions of this level that can be varied such as:  
1) type or complexity of tasks or functions it is permitted to execute, 2) which of its functions or tasks may 
be autonomously controlled, 3) circumstances under which the agent will override manual control,  
4) duration of autonomous operation, 5) the circumstances under which a human may be interrupted  
(or must be interrupted) in order to provide guidance [33]. 

To the extent we can adjust agent autonomy with reasonable dynamism (ideally allowing handoffs of 
control among team members to occur anytime) and with a sufficiently fine-grained range of levels, 
teamwork mechanisms can flexibly renegotiate roles and tasks among humans and agents as needed when 
new opportunities arise or when breakdowns occur. Such adjustments can also be anticipatory when 
agents are capable of predicting the relevant events [9; 35]. Research in adaptive function allocation –  
the dynamic assignment of tasks among humans and machines – provides some useful lessons for 
implementations of adjustable autonomy in intelligent systems. Examples of the types of questions and 
adaptive responses that might be addressed in adaptive allocation are shown in Table 2. 

Table 2: Examples of the Types of Questions and Adaptive Responses  
to be Addressed in Adaptive Allocation (Adapted from [49, P. 526]) 

Question Adaptive Response 
Who IF:  A human performs within predetermined criteria 

THEN:  The human shall keep task control, otherwise the task is allocated to a capable 
agent, if one exists. 

What IF:  Only parts of tasks are being performed poorly 
THEN:  Only these parts shall become available for dynamic allocation. 

When IF:  Certain time periods are associated with increased demand, error, or loss of 
situation awareness 

THEN:  These periods will be appropriate for dynamic allocation. 
Where IF:  Particular environments or combinations of environmental variables are 

associated with increased task demand or error 
THEN:  Encountering these environments triggers dynamic allocation. 

Why IF:  Extended periods of allocation have detrimental effects (objective or subjective) 
THEN:  Allocation shall periodically return control to the human. 

How IF:  Human performance, environmental attributes, and psycho-physiological 
indexes are paramount for human-agent interaction 

THEN:  All of these are inputs for allocation shift. 

When evaluating options for adaptively reallocating tasks among team members, it must be remembered 
that dynamic role adjustment comes at a cost. Measures of expected utility can be used to evaluate the 
tradeoffs involved in potentially interrupting the ongoing activities of agents and humans in such 
situations to communicate, coordinate, and reallocate responsibilities [30; 53; 54]. It is also important to 
note that the need for adjustments may cascade in complex fashion: interaction may be spread across 
                                                      

11  Cohen [30] draws a line between those approaches in which the agent itself wholly determines the mode of interaction 
with humans (mixed-initiative) and those where this determination is imposed externally (adjustable autonomy). 
Additionally, mixed-initiative systems are considered by Cohen to generally consist of a single user and a single agent. 
However, it is clear that these two approaches are not mutually exclusive and that, in an ideal world, agents would be 
capable of both reasoning about when and how to initiate interaction with the human and also of subjecting themselves to 
the external direction of whatever set of explicit authorization and obligation policies were currently in force to govern 
that interaction. Additionally, there is no reason to limit the notion of “mixed initiative” systems to the single agent-single 
human case. Hence we prefer to think of mixed-initiative systems as being those systems that are capable of making 
context-appropriate adjustments to their level of social autonomy (i.e., their level or mode of engagement with the 
human), whether a given adjustment is made as a result of reasoning internal to the agent or due to externally-imposed 
policy-based constraints. 
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many potentially-distributed agents and humans who act in multiply-connected interaction loops. For this 
reason, adjustable autonomy may involve not merely a simple shift in roles among a human-agent pair,  
but rather the distribution of dynamic demands across many coordinated actors.12 Defining explicit 
policies for the transfer of control among team members and for the resultant required modifications to 
coordination constraints can prove useful in managing such complexity [74]. Whereas goal adoption and 
the commitment to join and interact in a prescribed manner with a team sometimes occurred as part of a 
single act in early teamwork formulations, researchers are increasingly realizing the advantages of 
allowing the respective acts of goal adoption, commitment to work jointly with a team, and the choice of 
specific task execution strategies to be handled with some degree of independence [6; 66]. 

A major challenge is to ensure that the degree of autonomy is continuously and transparently adjusted to 
be consistent with explicitly declared policies that can ideally be imposed and removed at any time as 
appropriate [19; 66]. In simple terms, the goal of the agent or external entity performing such adjustments 
should be to make sure that the range of permissible actions do not exceed the range of those that are 
likely to be achievable by the agent (see figure 1).13 While the agent is constrained to operate within 
whatever deontic bounds on autonomy are currently enforced as authorization and obligation policies, it is 
otherwise free to act. Thus, the coupling of autonomy with policy gives the agent maximum opportunity 
for local adaptation to unforeseen problems and opportunities while assuring humans that agent behavior 
will be kept within desired bounds. 

2.4 The Gulfs of Evaluation and Execution 
A further challenge to effective human-agent interaction is that the agents necessarily interpose a level of 
indirectness between ourselves and actions in the world. This indirectness can often lead to situations 
where we are misled in our expectations about the state of the world and the effects of our actions: 

“The gulfs of execution and evaluation refer to the mismatch between our internal goals and 
expectations and the availability and representation of information about the state of the world and 
how it might be changed [figure 3]. The gulf of execution refers to the difficulty of acting upon the 
environment (and how well the [agent] supports those actions). The gulf of evaluation refers to the 
difficulty of assessing the state of the environment (and how well the [agent] supports the detection 
and interpretation of that state)… We can conceptualize the [agent] and its interface in this way.  
A person is a system with an active, internal representation. For an [agent] to be usable, the surface 
representation must correspond to something that is interpretable by the person, and the operations 
required to modify the information within the [agent] must be performable by the user. The 
interface serves to transform the properties of the [agent’s] representational system to those that 
match the properties of the person” [68].14 

                                                      
12  As Hancock and Scallen [49] rightfully observe, the problem of adaptive function allocation is not merely one of 

efficiency or technical elegance. Economic factors (e.g., can the task be more inexpensively performed by humans, agents, 
or some combination?), political and cultural factors (e.g., is it acceptable for agents to perform tasks traditionally 
assigned to humans?), or personal and moral considerations (e.g., is a given task enjoyable and challenging vs. boring and 
mind-numbing for the human?) are also essential considerations. 

13  If the range of achievable actions for an agent is found to be too restricted, it can, in principle, be increased in any 
combination of four ways: 1. removal of some portion of the environmental constraints, thus increasing the range of 
possible actions; 2. adding internal capabilities to the agent, thus increasing the range of independently achievable actions; 
3. making additional external help available to the agent, thus increasing the overall range of achievable actions;  
or 4. reducing an agent’s current set of obligations, thus freeing it to make other choices and to perform other tasks  
(see section 3.4.1 below). Of course, there is a cost in computational complexity to increasing the range of actions that 
must be considered by an agent – hence the judicious use of policy where certain actions can either be precluded from 
consideration or obligated with confidence in advance by a third party. 

14  We do not wish to imply that we are here taking a stance that the world is presented to us directly. Rather, as George 
Kelly elaborated in his principle of constructive alternativism, “‘reality’ does not reveal itself to us directly, but rather is 
subject to as many different constructions as we are able to invent” [17, p. 288]. Such considerations of the fluidity of 
meaning and interpretations are only recently being addressed within human-agent interaction research. 
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Figure 3: The Gulfs of Execution and Evaluation [68]. 

In brief, people need to understand what is happening and why when a teammate tends to respond in a 
certain way; they need to be able to control the actions of an agent even when it does not always wait for 
the human’s input before it makes a move; and they need to be able to reliably predict what will happen, 
even though the agent may alter its responses over time [34]. This problem is more pronounced in 
sophisticated agents that have a model of their teammates and the environment than with relatively more 
passive conventional programs because in agent applications these gulfs pose a problem not only for the 
human acting on the agent and its world, but also for the agent trying to act on the humans and their world. 
Humans and agents must be aware of what team members are doing, why they are doing it, and where it is 
on the team member’s current “agenda.” Table 3 below gives examples of the kinds of things that humans 
and agents need to be able to know in teamwork settings. 

Table 3: Examples of the Kinds of Things that Humans and Agents Need to be  
Able to Know in Teamwork Settings (Adapted and Extended from [24; 83; 85]) 

Questions About the Shared 
Representation of the Problem State 

Questions About the Representation of the 
Activities of Humans and Agents 

What type of problem is it? 
Is the problem routine or difficult? 
Is the problem high or low priority? 
What types of solution strategies are 
appropriate? 
What dependencies must be considered? 
How is the problem state evolving? 

How did we get into this state? 
What are they doing now? 
Why are they doing it? 
Are they having difficulties? Why? 
What are they doing to cope with difficulties? Are 
they likely to fail? 
How long will they be busy? 
What will they do next? 

Good designers help manage the problem of the gulf of evaluation by providing an understandable and 
controllable level of feedback about the agent’s intentions and actions. They must also think about how to 
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accurately convey the agent’s capabilities and limitations so that people are not misled in their 
expectations. Part of the problem is the natural enthusiasm of agent researchers; part of the problem is 
people’s tendency to falsely anthropomorphize.15 Though we can carefully describe agent capabilities and 
limitations within accompanying instructional manuals, it is even more important to find clever ways to 
subtly weave this information into the agent interface itself. 

Overcoming the gulf of execution requires providing people with straightforward means to accurately 
convey their intentions and requests to agents. And if the agent is not currently capable of performing a 
desired action, how do ordinary people program the agent to do what they want? While programming-by-
demonstration or simplified graphical or scripting languages have been suggested, none of them yet seem 
adequate to specify the kinds of complex tasks envisioned for future intelligent agents [31; 59; 76].16 

The discovery of means for humans to more effectively overcome these gulfs with agents – and vice versa 
– is a prime focus of research on mediating representations [39]. The choice of representation can have an 
enormous effect on human problem solving performance (e.g., [45; 57]. As a simple example, consider the 
impact that representing numbers in binary, Arabic, or Roman numeral form would have on the ability of 
humans or agents to efficiently multiply. As another example, concrete or abstract diagrams can be a 
particularly powerful form of knowledge representation for humans because they allow the explicit 
depiction of relevant information and effective hiding of inessential features which otherwise would have 
to be done at the expense of large amounts of cognitive work.17 Moreover, the appropriate mode of 
interaction needs to be considered in the context of the task, physical environment, and the individual 
preferences and capabilities of the human under varying conditions of cognitive load. When required, 
interruptions of the human by an agent must be done judiciously – with no more than the just the 
necessary degree of obtrusiveness. In addition, as the level of sophistication of communication between 
agents and humans increases, future forms of human-agent collaboration must enable people and agents to 
negotiate and work with appropriate tools for shaping shared understanding. 

Erickson [34] raises a related concern when he argues that designers ought to take advantage of the 
ontological expectations that users bring with them when they interact with various portrayals of 
functionality in graphical user interfaces. For example, specific computing functionality can be portrayed 
as an object or an agent, depending on what is most natural. The desktop metaphor takes advantage of 
users’ previous knowledge that office artifacts are visible, are passive, have locations, and may  
contain things. “Objects stay where they are: nice, safe predictable things that just sit there and hold 
things” [34, p. 94]. Ontological knowledge of a different sort comes into play when the agent metaphor is 
employed. Our common sense knowledge of what agents can do tells us that, unlike typical desktop 
                                                      

15  Fortunately, people have a lot of experience in judging the limitations of those with whom they communicate: 
“Sometimes people overstate what the computer can do, but what people are extremely good at is figuring out what they 
can get away with. Children can size up a substitute teacher in about five minutes” [56]. For evidence that developers of 
intelligent software are no less prone than other people to overestimate the capabilities of their programs, see McDermott 
[63]. 

16  Automatic programming is an enterprise with a long history of insatiable requirements and moving expectations.  
For example, Rich and Waters [72] remind us that “compared to programming in machine code, assemblers represented a 
spectacular level of automation. Moreover, FORTRAN was arguably a greater step forward than anything that has 
happened since. In particular, it dramatically increased the number of scientific end users who could operate computers 
without having to hire a programmer.” Today, no one would call FORTRAN a form of automatic programming, though in 
1958 the term was quite appropriate. The intractability of fully-automated, completely-general programming is analogous 
to the problem of automated knowledge acquisition [17; 39]. As Sowa observes: “Fully automated knowledge acquisition 
is as difficult as unrestricted natural language understanding. The two problems, in fact, are different aspects of exactly the 
same problem: the task of building a formal model for some real world system on the basis of informal descriptions in 
ordinary language. Alan Perlis once made a remark that characterizes that difficulty: You can’t translate informal 
specifications into formal specifications by any formal algorithm.” [77]. 

17  “Chernoff faces,” which leverage the efficiency of human facial recognition into the domain of statistical analysis, are an 
ideal exemplar of the kind of integrative pattern-based feedback that works well for people [23]. Another outstanding 
example is the OZ cockpit display [78]. 
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objects, they can notice things, carry out actions, know and learn things, and go places.18 “Agents become 
the repositories for adaptive functionality” [34, p. 94]. Erickson concludes that research “which focuses on 
the portrayal of adaptive functionality, rather than [solely] on the functionality itself, is a crucial need if 
we wish to design agents that interact gracefully with their users” [34, p. 95]. 

2.5 The Substitution Myth 
A persistent misperception about all forms of automation is the notion that such assistance is a simple 
multiplier of human capability. Such a view is natural because, from the point of view of an outsider 
observing the assisted human, it seems that – in the successful cases at least – the person is able to perform 
the task better or faster than he or she could without help. In reality, however, help of whatever kind does 
not simply enhance our ability to perform the task: it changes the nature of the task itself [68]. Those who 
have had a five-year-old child offer to help them with the dishes know this to be true – from the point of 
view of an adult, such “help” does not necessarily diminish the effort involved, it merely effects a 
transformation of the work from the physical action of washing the dishes to the cognitive task of 
monitoring the progress (and regress) of the child. 

Ignorance of such considerations leads to what Wiener [83] called “clumsy automation” and what 
Christoffersen and Woods [24] term the “substitution myth”: the erroneous notion that “automation 
activities simply can be substituted for human activities without otherwise affecting the operation of the 
system.”19 In refutation of the substitution myth, Table 4 contrasts the putative benefits of automated 
assistance with the results of empirical study. Ironically, even when technology succeeds in making tasks 
more efficient, the human workload is not reduced accordingly. As noted by many researchers and 
summarized by Woods as the law of stretched systems: “every system is stretched to operate at its 
capacity; as soon as there is some improvement, for example in the form of new technology, it will be 
exploited to achieve a new intensity and tempo of activity” [84]. 

Notwithstanding these challenges, adult humans and radically less-abled entities (e.g., children, dogs, 
video game characters) are capable of working together effectively in a variety of situations where a 
subjective experience of collaborative teaming is often maintained despite the magnitude of their 
differences. Generally this is due to the ability of humans to rapidly size up and adapt to the limitations of 
their teammates in relatively short order. More study is needed to understand how to take advantage of 
these human abilities in a general way to make human-agent interaction more natural and effective in 
complex agent applications. As with all automation, the introduction of agents into human work practices, 
particularly agents who do not yet generally exhibit the intelligence of a five-year old child, must be done 
carefully to ensure that the cost of the coordination and monitoring demands on the human do not exceed 
the value of the agent assistance offered [30]. 

                                                      
18  It is also easy for people to assume less tangible qualities about agents, e.g., that they are internally consistent, are rational, 

act in good faith, can introspect, can cooperate to achieve common goals, and have a persistent mental state. Obviously, 
agent designers need to work hard to make sure that human expectation accords with the stark facts of reality in each of 
these dimensions. Violated trust inevitably breeds user hostility. 

19  The substitution myth is one example of what Feltovich and colleagues [36] have termed the “reductive bias”:  
the tendency for designers and operators to oversimplify complex phenomena, often with detrimental effects. 
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Table 4: Putative Benefits of Automation vs. Actual Experience  
(Adapted and Expanded from [73; 84]) 

Putative Benefit Real Complexity20 
Better results are obtained 
from “substitution” of machine 
activity for human activity. 

Transforms practice; the roles of people change; old and sometimes 
beloved habits and familiar features are altered – the envisioned 
world problem. 

Frees up human by offloading 
work to the machine. 

Creates new kinds of cognitive work for the human, often at the 
wrong times; every automation advance will be exploited to require 
people to do more, do it faster, or in more complex ways – the law 
of stretched systems. 

Frees up limited attention by 
focusing human on the correct 
answer. 

Creates more threads to track; makes it harder for people to remain 
aware of and integrate all of the activities and changes around 
them. 

Less human knowledge is 
required. 

New knowledge and skill demands are imposed on the human. 

Agent will function 
autonomously. 

Team play with people is critical to success. 

Same feedback to human will 
be required. 

New levels and types of feedback are needed to support peoples’ 
new roles. 

Agent enables more flexibility 
to the system in a generic way. 

Resulting explosion of features, options, and modes creates new 
demands, types of errors, and paths toward failure – automation 
surprises. 

Human errors are reduced. Both agents and people are fallible; new problems are associated 
with human-agent coordination breakdowns. 

3.0 WORK-PRACTICE MODELING AND HUMAN-AGENT 
COLLABORATION ONBOARD THE INTERNATIONAL  
SPACE STATION 

In this section we describe our efforts to apply the principles of human-centered teamwork to the design of 
robotic agents appropriate for use aboard the International Space Station (ISS). Following a discussion of 
the background of the project (section 3.1), we describe our progress and lessons learned to date in using 
Brahms work practice modeling and simulation approaches (section 3.2). We briefly discuss the 
implications of our preliminary studies of teamwork in space applications (section 3.3). We then show 
how Brahms capabilities are combined with KAoS services for analysis and enforcement of policies for 
teamwork and adjustable autonomy, and NOMADS strong mobility and fine-grained resource 
management capabilities (section 3.4). 

3.1 Background and Motivation 
Enhancing the crew’s ability to perform their duties is critical for successful, productive, and safe space 
operations. Crew time on such missions is a precious resource. The limited number of crew members are 
required to maintain complex systems, assist with life-critical environmental health monitoring and 
regulation, perform dozens of major simultaneous payload experiments, and perform general 
housekeeping. As one example, consider the challenges of Shuttle Mission 89’s flight in January, 1998: 

“One astronaut, Andy Thomas, will undertake several hundred research runs involving 26 different 
science projects in five disciplines. The projects are provided by 33 principal investigators from the 
U.S., Canada, Germany and the U.K” (Yuri Gawdiak, personal communication). 

                                                      
20  See Hoffman’s [50] discussion of the concept of “complexification.” 
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Other considerations also are important motivators for efficient human teaming and some degree of 
robotic assistance. Considerable time and tedium, as well as long- and short-term risks, are involved in 
human EVA activity. Safety considerations and size constraints are also important issues for many 
manned mission activities, especially in emergency situations. Even if it were physically possible for an 
astronaut to enter congested spacecraft areas, protruding debris or other environmental hazards of one kind 
or another could pose serious safety risks [21]. 

One example of a system being designed to support such activities is the Personal Satellite Assistant 
(PSA), a softball-sized flying robot designed to operate onboard spacecraft in pressurized micro-gravity 
environments [42] (figure 4). The PSA will incorporate environmental sensors for gas, temperature,  
and fire detection, providing the ability for the PSA to monitor spacecraft, payload and crew conditions. 
Video and audio interfaces will support navigation, remote monitoring, and video-conferencing.  
Ducted fans will provide propulsion and batteries will provide portable power. 

 

Figure 4: The Personal Satellite Assistant (Image Courtesy Greg Dorais). 

Other examples of such systems involving very different kinds of interaction with humans are Robonaut,  
a dexterous robot with torso, head, arms, and five-fingered hands designed for fine movement [5]  
(figure 5), and Mini-AERCam, a flying spherical “eye” for use outside the ISS in multi-robot multi-person 
EVA scenarios. Robots of various forms will also support humans performing various forms of surface 
exploration on interplanetary expeditions. 
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Figure 5: Robonaut is a Dexterous Robot with Torso, Head, Arms,  

and Five-Fingered Hands Designed for Fine Movement [5]. 

To support the objective of efficient and effective space operations, we are midway through a three-year 
study to show whether a model of human-robot collaboration implemented in Brahms, KAoS,  
and NOMADS can be used not only as a design tool to understand human-robotic interaction, but also in 
conjunction with agents in the execution environment. The overall plan of the study is shown in figure 6. 
In the next sections, we discuss our efforts to date to use Brahms in performing an astronaut work practice 
study and work systems design for use of collaborative robots onboard the ISS (section 3.2). We then 
share some of our current efforts to extend teamwork theory consistent with the results of our modeling, 
with behavioral science studies, and with previous research on human-centered teamwork (section 3.3). 
Finally, we describe our progress to date on integrating Brahms, KAoS, and NOMADS in preparation for 
the experimental phase of the study (section 3.4). 

 

Figure 6: Plan for Study of Human-Robot Collaboration on the ISS. 
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3.2 Modeling Life Onboard the International Space Station 

3.2.1 Brahms 

Brahms is a language and modeling and simulation environment based on the idea of situated action  
[25; 79] and offers to the researcher a tool to represent and study the richness of activity theory and work 
practice [26]. A traditional task or functional analysis of work leaves out informal logistics, especially how 
environmental conditions come to be detected and how problems are resolved. Without consideration of 
these factors, analysts cannot accurately model how work and information actually flow, nor can they 
properly design software agents that help automate human tasks or interact with people as their 
collaborators. For these goals, what is needed is a model that includes aspects of reasoning found in an 
information-processing model, plus aspects of geography, agent movement, and physical changes to the 
environment found in a multi-agent simulation – interruptions, coordination, impasses, and so on. A model 
of work practice focuses on informal behavior in specific locations and circumstances. It emphasizes the 
behavior by which synchronization occurs (such that the task contributions of humans and machines flow 
together to accomplish goals) and allows the researcher to capture much of the richness of activity theory. 

Brahms is based on an Agent-Oriented Language (AOL) with a well-defined syntax and semantics.  
A Brahms model can be used to simulate human-machine systems, for what-if experiments, for training, 
user modeling, or driving intelligent assistants and robots. For a full description of Brahms, the reader is 
referred to [75]. The run-time component – the Brahms virtual machine – can execute a Brahms model, 
also referred to as a simulation run (figure 7). 

 

Figure 7: A Day in the Life of the ISS Crew: 2D Output of a Brahms Simulation. 
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The Brahms architecture is organized around the following representational constructs: 

Groups of groups containing 
Agents who are located and have  

Beliefs that lead them to engage in 
Activities specified by 

Workframes  

Workframes consist of 
Preconditions of beliefs that lead to 

Actions, consisting of 
Communication Actions 
Movement actions 
Primitive Actions 
Other composite activities 

Consequences of new beliefs and facts 
Thoughtframes that consist of 

Preconditions and 
Consequences 

Brahms relates knowledge-based models of cognition (e.g., task models) with discrete simulation and the 
behavior-based subsumption architecture. In Brahms, agents’ behaviors are organized into activities, 
inherited from groups to which agents belong. Most importantly, activities associate behaviors of people 
and their tools with particular times and locations, so that resource availability and informal human 
participation can be taken into account. A model of activities doesn’t necessarily describe the intricate 
details of reasoning or calculation, but instead brings out aspects of the social-physical context in which 
reasoning occurs. Thus Brahms differs from other simulation systems by incorporating: 

• 

• 

• 

Activities of multiple agents located in time and space; 

Conversations; 

Descriptions of how information is represented, transformed, reinterpreted in various physical 
modalities. 

3.2.2 A Human-Centered Perspective on Autonomous Systems Design 

Consistent with our emphasis on understanding teamwork in practice, our project necessarily began with a 
detailed study of how the astronauts actually work onboard the ISS. Our first step has been to develop a 
Brahms model of the daily work practice of the crew. Secondly, we would extend that model to include 
various PSA and Robonaut use scenarios. Finally, to support real-time operational teamwork capabilities 
for these robots, we would enhance the Brahms model and software to run in conjunction with KAoS 
policies and agent services, and NOMADS capabilities (see section 3.5 below). 

The objective of studying crew work practice is threefold: 1) to study how actual crew work practices 
emerge from planned activities and written procedures; 2) to discover opportunities for collaborative 
robots such as the PSA to assist with the crew’s work; and 3) to learn more about how teamwork actually 
occurs in practice. A more complete account of the Brahms modeling effort to date may be found in [1]. 
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3.2.3 A Day in the Life 

In a typical day, each ISS crewmember divides his or her time between physical exercise, maintenance, 
experiments, communication with ground personnel, unstructured time, and essential personal activities 
(e.g., rest, eating). These activities are critical for the well-being of the crew. Hence, the planned 
maintenance and research activities must be scheduled around them. At the same time, several 
interdependent structural constraints ensure crew safety and productivity: thermal control, power 
management, communication bandwidth management, and regulation of other systems. These form a 
network of components that must be accurately timed and orchestrated around crew activities and needs. 

An elaborate planning process is necessary to meet the human and system constraints. The planning 
complexity is such that the major planning rule for the ISS is actually: “Thou shalt not replan”  
(see [67, p. 2.1-21]). This means that – with the exception of “unacceptable failures” and “job jar” items 
left to the self-organization of the crew – any activity that can not be performed at its allotted time will not 
be replanned in real-time. It will simply not be performed, “with the expectation that [it] will be 
rescheduled into the operational flow at some later date.” Such discrepancies are actually frequent, as the 
comparison between daily plans and actual ship logs shows. 

3.2.4 Developing the Brahms Model 

Table 5: A Day in the Life of the ISS Crew  
(Derived from the Onboard Plan for May 7th, 2001 Uploaded to the ISS) 

06:00 - 06:10 ISS morning inspection 
06:10 - 06:40  Post Sleep 
06:40 - 07:30  Breakfast 
07:30 - 08:00  Prep for work 
08:02 - 08:17  DPC via S-Band 
08:30 - 09:15  (FE-1) TVIS Video Survey 
08:15 - 08:30  (FE –2) SSC Daily Maintenance 
08:35 - 08:50  (FE –2) MEC card swap 
09:00 - 10:00  (FE –2) Physical Exercise, Active Rest 
09:15 - 10:45  (FE –1) Physical Exercise, Active Rest 
09:00 - 09:15  (CDR) URAGAN, visual observations 
09:50 - 10:20  (CDR) Replacement of urine-receptacle in Toilet 
10:00 - 10:30  (FE –2) MEC Exercise Data Downlink 
10:20 - 11:00  (CDR) ECLSS maintenance by MCC GO 
10:55 - 11:20  (FE –1) LAB PL Status/Monitor 
11:00 - 11:30  (CDR) SOYUZ Window Inspection 
11:30 - 11:50  7A TAGUP via S-Band 
12:00 - 13:00  LUNCH 
13:05 - 13:25  WPC via S-Band 
13:30 - 15:30  (CDR) Wet Cleaning/ ODF Medical Support 
13:30 -16:30  (FE -1, FE –2) Back Up MDM S/U 
16:15 - 17:15  (CDR) Physical Exercises, VELO-1 
16:55 -17:15  (FE –1) Prep of Delta File (IMS) 
16:45 - 18:15  (FE –2) Physical Exercise, Active Rest 
17:15 - 18:15  (FE –1) Physical Exercise, Active Rest 
17:15 - 18:15  (CDR) Physical Exercise. RED-1 
18:15 - 18:45  Familiarization with next day’s plan 
18:45 - 19:30  Prep of Report 
19:05 - 19:20  DPC via S-Band 
19:30 - 19:55  Dinner 
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We sought data that could lead us to understand and represent a generic “day in the life” of the ISS crew. 
However, we also dedicated more attention to specific activities and scenarios (such as emergency 
scenarios) that appeared of great relevance to our research objectives. We consulted ISS documentation 
and manuals, onboard procedures and flight rules, crew daily plans and ship logs, crew debriefings, and, 
particularly, ISS crew videos. This information was interpreted, analyzed, and validated through 
interviews with astronauts, astronaut trainers, and flight controllers at Mission Control. While the day 
chosen for modeling was May 7th, 2001 (there was a relatively large amount of data available for that 
day), we generalized the model so that we could later simulate any typical day.  

In our analysis of the data gathered during the first phase of our research we looked for patterns in the 
crew activities and the emergence of work practices that are specific to onboard life. We generalized and 
represented the individual astronaut’s daily behavioral patterns as learned and shared activities at the 
informal group level. For example, the activity of eating breakfast is represented in the Brahms ISS model 
at the Crew group-level. This way, all agents that are a member of the ISS Crew “know” how to perform 
this activity. The group structure also allows us to represent differences between social, cultural and other 
type of communities (for example, the behavioral differences between American and Russian 
crewmembers, and between male and female crewmembers). 

In order to make our model reusable and applicable to any typical day and scenario on the ISS, we 
represented procedures, daily plans, and flight rules as physical and conceptual objects in the model,  
that agents can access, have beliefs about, manipulate, and act upon. We categorized activities according 
to a 2-by-2 matrix, with the degree in which the activity was scheduled (scheduled vs. unscheduled 
activities) represented on one axis, and the uniqueness or repeatability (day-specific vs. recurrent 
activities) of the activity represented on the other axis (see Table 6). This allowed us to model elements of 
the crew’s situated action by letting the crew agents perform a just-in-time replanning activity21 through 
which they change their mental plan – that was first constrained by the OSTP and coordinated with 
Mission Control – during the day, based on the context of the day’s activities. 

Table 6: A 2-by-2 Matrix of Sample ISS Activities 

 Scheduled activity Unscheduled activity 
Day-specific 

activity 
Maintenance activities (e.g., Replacement of 
urine-receptacle in Toilet). 
Experiments (e.g., LAB PL Status/Monitor). 
… 

Emergencies. 
Job-Jar activities 
Unexpected maintenance or 
repair activities. 
… 

Recurrent 
activity 

Physical exercise. 
Daily Planning Conference. 
Eating (lunch, dinner, breakfast) 
… 

Going to the toilet. 
Sending personal email. 
… 
 

Discrepancies between plan and reality come out of the simulation of the model, as they do during the 
actual day of the astronauts. While procedures and scheduled activities suggest a certain idealized 
scenario, several issues can emerge: procedures might not be clear, American and Russian versions of the 
same document might differ slightly and thereby generate confusion, the time needed to complete an 
activity might be longer than expected, tools might get lost, and, significantly, new work practices might 
emerge. 

                                                      
21  We do not suggest that astronauts perform this activity by executing a computational algorithm similar to artificial 

intelligence planning systems. We rather represent the astronaut’s ability to change the order they decide to perform their 
activities, based on situational awareness and context. 
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The discrepancies we refer to are not only those caused by imprecise timing of new activities, or triggered 
by unforeseeable error and mismatches with systems or procedures.22 As Table 7 shows, we also focus  
on more substantial discrepancies that involve a deliberate (though possibly not planned-in-advance) 
behavior of the crew. For example, it is often the case that “highly motivated crew members sacrifice 
personal time to ‘get the job done’” [70]. Traditional approaches do not take into consideration any of 
these kinds of unplanned events. More importantly, they rarely deal with the concatenated effects caused 
by the highlighted discrepancies. For example, the activity of printing out a procedure rather then reading 
it on a laptop implies that the astronauts must move to the printer location; it also implies that paper must 
be available, otherwise new paper must be fed into the printer. In contrast to typical planning approaches, 
the Brahms simulation is capable of showing how the practice of onboard activities often diverges, both in 
timing and execution, from the originally-scheduled activities and procedures. Distances and movements, 
noises, tools location, work practice, and so forth are considered. Hence, delays caused by crew movement 
constraints, the search for tools and other items, and the inability to share resources or access to electronic 
procedures can be revealed by the simulation. For example, we model the fact that the work practice of the 
astronauts is to move from one module to the other to communicate face-to-face, rather than using the 
internal audio system. 

Table 7: Discrepancies between Plan and Practice23 

Example Cause of Discrepancy 

Plan Practice 
Procedures are not easily 
accessible or are not clear 

During emergency, refer to procedure During emergency, rely on 
training and memory 

Noise level on internal 
audio system 

Use internal audio system to 
communicate between modules 

Move from module to module 
to communicate with crew 
members 

Personal preferences Do medical tests as scheduled Do medical tests in the 
morning 

Shared resources are not 
always available 

Upload on laptop computer 
medical/physical data after 
experiment/exercise 

Upload data rarely 

Personal habits Read procedure Read electronic procedure 
(from laptop), or read printed 
procedure 

Inventory system is not 
always reliable 

Use the tools indicated in procedure Tools must be found and time 
can be lost in this operation 

Inventory system is not 
always reliable 

Use the bar-code reader for inventory Rarely use bar-code reader 

3.3 Extending Teamwork Theory 
In extending traditional teamwork theory [28; 82], we seek to incorporate the best of previous research on 
human-centered collaboration and teamwork, while simultaneously grounding new findings in our own 
work practice study experience. In addition to surveying studies of multi-agent teamwork and human-
centered perspectives cited above, we are assessing the contributions of allied fields ranging from 

                                                      
22  In this regard, Expedition 2 reported a substantial improvement with respect to Expedition 1 in the accuracy of the 

predicted duration of scheduled activities and in the feasibility of the planned daily workload. 
23  Sources: ISS Ship logs; ISS debriefs; interviews with ISS training specialists. 
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cognitive function analysis [10], to studies of animal signaling and cooperation, the roles of values and 
affect, and the enablers of effective delegation in humans [64]. 

From our preliminary studies of human teamwork to date we have realized that the longstanding emphasis 
in teamwork research on “joint goals” and fixed task-specific “roles” has previously overshadowed other 
important aspects of teamwork such as shared context, awareness, identity, and history. Unlike the 
relatively rigid joint intentions of typical agent teamwork models, experience in work practice underscores 
the importance of conceptualizing agreements among team members as things that are forever tentative 
and subject to ongoing negotiation. An interesting finding has been that some of the most important 
settings for the coordination of teamwork are not in formal planning meetings but around the breakfast 
table (figure 8). Such settings can also be a time for sharing knowledge gleaned from practice. To take a 
simple example, we observed Commander Usachev engaged vigorously spinning one of his food tins at 
the breakfast table – what a naïve observer might initially think was just “playing with his food” could 
instead prove to be a useful strategy to heat the can or to keep it from drifting off while he attends to other 
activities. 

 

Figure 8: Breakfast Onboard the ISS during Expedition 2  
(Commander Yuri Usachev on the Left). 

Additionally, we expect that as we study divergences between plan and practice we will better understand 
how people plan and coordinate their activities in the real world. Such detail in the Brahms model has 
already helped us notice unexpected opportunities for robotic assistance. For example, a simple thing like 
one crew member having to stand and hold a flashlight for another or having to stop and look for missing 
tools can tie up valuable human resources. Building features to support mundane activities that waste 
valuable crew time into the PSA has turned out to be of great importance. 

RTO-MP-088 KN6 - 21 



Adjustable Autonomy and Human-Agent 
Teamwork in Practice: An Interim Report on Space Applications  

3.4 Integrating Brahms, KAoS, and NOMADS 
In preparation for the experimental phase of our work, we have integrated a version of Brahms with 
KAoS, and are developing an approach to take advantage of NOMADS as well. These capabilities and 
their expected roles during the experimental phase are briefly described below. 

3.4.1 KAoS 

KAoS is a collection of componentized agent services compatible with several popular agent frameworks, 
including the DARPA CoABS Grid, DARPA the ALP/Ultra*Log Cougaar framework, and Objectspace 
Voyager. The adaptability of KAoS is due in large part to its pluggable infrastructure based on Sun’s Java 
Agent Services (JAS) (http://www.java-agent.org). For a full description of KAoS, the reader is referred to 
[16; 18; 19]. 

There are two key KAoS services relevant to the effort described here: policy services and domain 
management services. 

Policy services are used to define, manage, and enforce constraints assuring coherent, safe, effective,  
and natural interaction among teams of human and agents. Knowledge is represented declaratively in 
DAML+OIL ontologies. The current KAoS Policy Ontology (KPO) specification defines basic ontologies 
for actors, actions, entities that are the targets of actions (e.g., other actors, computing resources), places, 
policies, and policy conditions. We have extended these ontologies to represent simple atomic Java 
permissions, as well as more complex NOMADS, and KAoS policy constructs. The ontologies are 
currently being extended with additional classes, individuals, and rules to represent our model of human-
agent teamwork, reflecting both the traditional concerns of team formation and maintenance as well as 
newer concerns about effectiveness of human-agent interaction in specific contexts of practice. 

The policy ontology distinguishes between positive and negative authorizations (i.e., constraints that 
permit or forbid some action) and positive and negative obligations (i.e., constraints that require some 
action to be performed, or else serve to waive such a requirement) [9; 32]. Dynamic changes or additions 
to policy require logical inference to determine first of all which if any policies are in conflict and second 
how to resolve these conflicts [62]. We have implemented a general-purpose algorithm for policy conflict 
detection and harmonization whose initial results promise a relatively high degree of efficiency and 
scalability.24 Figure 9 shows the three types of conflict that can currently be handled: positive vs. negative 
authorization (i.e., being simultaneously permitted and forbidden from performing some action), positive 
vs. negative obligation (i.e., being both required and not required to perform some action), and positive 
obligation vs. negative authorization (i.e., being required to perform a forbidden action). We use 
subsumption-based reasoning to allow policy conflicts to be detected and resolved even when the actors, 
actions, or targets of the policies are specified at vastly different levels of abstraction. 

Beyond the mechanisms for assuring consistency among permissions and obligations, we are developing 
an approach to determine how and when to make policy changes based on adjustable autonomy 
considerations. To accommodate reasoning and decision-making under uncertainty in these situations,  
we are incorporating a reasoning component based on knowledge-based construction and evaluation of 
Bayesian networks and influence diagrams [4; 14; 15; 52; 55]. The results of this analysis are used to 
compute the expected utility of potential adjustments to the agent’s autonomy. The goal is to delegate as 
much as appropriately can be done to the agent while continually adjusting the policies in force so that the 
range of permissible actions does not exceed the range of those deemed as likely to be achievable.  
The need to maintain an appropriate level of mutual awareness of the intentions of team members and of 
the state of the world while minimizing unnecessary intrusiveness is also being taken into consideration in 

                                                      
24  A detailed description of the KAoS policy ontologies and our policy conflict detection and resolution process is currently 

being prepared for publication. 
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the model. While initial results are encouraging, these are challenging problems that will require many 
additional years of long-term research. 

We are also exploring approaches to increase the agent’s autonomy in a more absolute sense by 
automatically expanding its external capabilities so that the agent is able to take on new kinds of tasks 
relying on outside assistance that it could not have taken on by itself alone (or through the use of external 
resources of which it was previously aware). For example, one approach might be to provide support for 
transparent resource discovery and coordination processes. A related approach to increasing the  
agent’s autonomy in an absolute sense is to provide support for it to efficiently reduce its obligations 
through various forms of facilitation, and renegotiating (or, in exceptional circumstances, reneging on) 
current obligations so that the agent can focus on higher priority tasks. 

 

Figure 9: Three Types of Policy Conflict are Detected and Resolved in KAoS. 

Policy enforcement mechanisms built either into the execution environment or the agent platform aim to 
assure policy compliance for any agent or program running in that environment or platform, regardless of 
how that agent or program was written.25 Viewing the knowledge governing the interaction of agent 
communities from a policy-based perspective has proven natural and effective in a variety of our recent 
agent applications (e.g., [3; 12]), and we are finding that many of the lessons learned can be 
straightforwardly generalized to the domain of human-agent teamwork.  

Domain services are used to facilitate the structuring of agents into complex organizational structures, 
administrative groups, and dynamic task-oriented teams, and to provide a common point of administration 
and policy enforcement. Through various property restrictions, a given policy can be variously scoped, for 
example, either to individual agents, to agents of a given class, to agents belonging to an intensionally-  
or extensionally-defined domains or teams, or to agents running in a given physical place or computational 
environment (e.g., host, VM).  
                                                      

25  Our need to support heterogeneous agents and platforms precludes us from using an approach such as Myers et al. [66] 
that provides for policy enforcement by requiring all agents to adopt a common BDI framework. Scerri et al. [74]  
and Cohen et al. [30] differ from both Myers et al. and our approach in that the determination of the preferable mode of 
interaction with humans and other agents is wholly performed through the reasoning processes of the agents themselves 
rather than allowing for policy constraints to be explicitly imposed by external authority. In the context of our space 
applications, we see the requirement to embrace both approaches: providing a model and mechanisms for self-initiated 
reasoning about mixed-initiative interaction while assuring that the actions of agents are consistent with externally-
specified policy constraints. 

RTO-MP-088 KN6 - 23 



Adjustable Autonomy and Human-Agent 
Teamwork in Practice: An Interim Report on Space Applications  

The basic approach for the integration of Brahms and KAoS can be described as follows. A Brahms  
world runs in parallel with the robotic execution environment, providing a work practice context when 
KAoS services are invoked. KAoS is in turn responsible for message transport, management and 
execution of conversation, adjustable autonomy, and teamwork policies among humans and agents. KAoS 
is also responsible for providing input from the teamwork model to general-purpose robotic planning, 
scheduling, and execution capabilities that will be used in our testbed experimentation. For example,  
we are working with Muscettola and his colleagues on an interface between KAoS and EUROPA/IDEA 
for this purpose [65]. 

3.4.2 NOMADS 

NOMADS is the name we have given to the combination of Aroma, an enhanced Java-compatible Virtual 
Machine (VM), with its Oasis agent execution environment [80]. It is designed to provide environmental 
protection of two kinds: 

• 

• 

assurance of availability of system resources, even in the face of changing resource priorities, 
buggy agents or denial-of- service attacks; 

protection of agent execution state, even in the face of unanticipated system failure. 

These basic capabilities of NOMADS provide essential features of reliability and safety required for 
interaction with humans in dynamic and demanding space environments. We are currently working with 
Sun Microsystems on incorporating resource management features similar to NOMADS into a future 
version of the commercial Java platform. 

Thus, in summary, the model of work practice provided by Brahms of activities, humans, agents,  
and objects that are part of those activities provides needed contextual parameters that will be used to tune 
the constraints of the KAoS teamwork model and its operational mechanisms. The policy specification, 
representation, conflict resolution, and enforcement mechanisms of KAoS will assure that a coherent set 
of teamwork policies can be continuously in effect. The strong mobility and safe execution features of 
NOMADS will enable protection and optimal use of scarce onboard computing resources. 

4.0 SUMMARY 

We have outlined a preliminary perspective on the basic principles and pitfalls of adjustable autonomy and 
human-centered teamwork, and some of our preliminary observations on a teamwork theory incorporating 
insights from the cognitive and behavioral sciences, and our own studies of teamwork in practice. We then 
described the first phases of its application to the development of an agent-based model of the work 
practice of the ISS crew. We use Brahms – an agent-oriented, activity-based language – to model the ISS 
crew’s situated action, communication, and collaboration during the course of their daily activities. In our 
modeling of a day in the life onboard the ISS we include resource availability, both scheduled and 
unscheduled activities, and the emergence of work practices. In addition, we model human-machine 
interaction (such as the collaboration between the crew and robotic systems such as the PSA and the 
Robonaut). In the next phase of our research we will experimentally explore the use of an enhanced 
Brahms ISS model as part of an execution environment for teamwork between ISS crews and onboard 
collaborative software- and robotic-agents relying on integration with the KAoS and NOMADS 
frameworks. As the study proceeds over the long term, we hope our work will benefit those who plan and 
participate in work activities in a wide variety of space applications, as well as those who are interested in 
design and execution tools for teams of robots that can function as effective assistants to humans. 
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